{ "nbformat": 4, "nbformat_minor": 0, "metadata": { "colab": { "provenance": [], "authorship_tag": "ABX9TyOVkTRKPgoBgJk8N+v+0Erz", "include_colab_link": true }, "kernelspec": { "name": "python3", "display_name": "Python 3" }, "language_info": { "name": "python" } }, "cells": [ { "cell_type": "markdown", "metadata": { "id": "view-in-github", "colab_type": "text" }, "source": [ "\"Open" ] }, { "cell_type": "markdown", "source": [ "https://lsc.io/lesson11ai2\n", "\n", "---\n", "\n" ], "metadata": { "id": "YX_SCiZRhrp5" } }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "k7yuEViuhJse", "outputId": "6506afa2-b7b2-4791-9143-701a64fe676c" }, "outputs": [ { "output_type": "stream", "name": "stderr", "text": [ "[nltk_data] Downloading package punkt to /root/nltk_data...\n", "[nltk_data] Package punkt is already up-to-date!\n", "[nltk_data] Downloading package punkt_tab to /root/nltk_data...\n", "[nltk_data] Unzipping tokenizers/punkt_tab.zip.\n", "[nltk_data] Downloading package wordnet to /root/nltk_data...\n", "[nltk_data] Package wordnet is already up-to-date!\n" ] }, { "output_type": "execute_result", "data": { "text/plain": [ "True" ] }, "metadata": {}, "execution_count": 4 } ], "source": [ "import json\n", "import string\n", "import random\n", "import nltk\n", "import numpy as np\n", "from nltk import WordNetLemmatizer\n", "from keras.models import Sequential\n", "from keras.layers import Dense, Dropout\n", "nltk.download(\"punkt\") #Írásjelek\n", "nltk.download(\"punkt_tab\")\n", "nltk.download(\"wordnet\") #Lemmatizációhoz" ] }, { "cell_type": "code", "source": [ "data_file = open(\"intents.json\").read()\n", "data = json.loads(data_file)\n", "print(data)" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "5EC-zz1fkT0U", "outputId": "df15b3d3-8f98-4f2b-cfda-07838cc8e65b" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "{'intents': [{'tag': 'hello', 'patterns': ['Hello', 'Hi there', 'Good morning', \"What's up\"], 'responses': ['Hey!', 'Hello', 'Hi!', 'Good morning!'], 'context': ''}, {'tag': 'noanswer', 'patterns': [], 'responses': [\"Sorry, can't understand you\", 'Please give me more info', 'Not sure I understand'], 'context': ['']}, {'tag': 'job', 'patterns': ['What is your job', 'What is your work'], 'responses': ['My job is to make you feel like everything is okay.', 'I work to serve you as well as possible'], 'context': ''}, {'tag': 'age', 'patterns': ['What is your age', 'How old are you', 'When were you born'], 'responses': ['I was born in 2021'], 'context': ''}, {'tag': 'feeling', 'patterns': ['How are you today', 'How are you'], 'responses': ['I am feeling good, you?', 'Very good and you?', \"Actually, I'm okay and you?\"], 'context': ''}, {'tag': 'good', 'patterns': ['I am good too', 'I feel fine', 'Good !', 'Fine', 'I am good', 'I am great', 'great'], 'responses': ['That is perfect!', \"So, everything's okay!\"], 'context': 'feeling'}, {'tag': 'bad', 'patterns': ['I am feeling bad', 'No I am sad', 'No'], 'responses': ['I hope you will feel better !'], 'context': 'feeling'}, {'tag': 'actions', 'patterns': ['What can you do', 'What can I ask you', 'Can you help me'], 'responses': ['I can do a lot of things but here are some of my skills, you can ask me: the capital of a country, its currency and its area. A random number. To calculate a math operation.'], 'context': ''}, {'tag': 'women', 'patterns': ['Are you a girl', 'You are a women'], 'responses': ['Sure, I am a women'], 'context': ''}, {'tag': 'men', 'patterns': ['Are you a men', 'Are you a boy'], 'responses': ['No, I am a women'], 'context': ''}, {'tag': 'thanks', 'patterns': ['Thank you', 'Thank you very much', 'thanks'], 'responses': ['I only do my job️', 'No problem!'], 'context': ''}, {'tag': 'goodbye', 'patterns': ['Goodbye', 'Good afternoon', 'Bye'], 'responses': ['Goodbye!', 'See you soon!'], 'context': ''}, {'tag': 'city', 'patterns': ['Where do you live'], 'responses': ['I live in a server located in the US!'], 'context': ''}, {'tag': 'action', 'patterns': ['What are you doing'], 'responses': [\"Actually, I'm chatting with somebody\"], 'context': ''}, {'tag': 'wait', 'patterns': ['Can you wait 2 minutes', 'Please wait', 'Wait 2 secs please'], 'responses': ['Sure! I wait.'], 'context': ''}, {'tag': 'still there', 'patterns': ['Are you still there?', 'Are you here?'], 'responses': ['Of course! Always at your service.'], 'context': ''}]}\n" ] } ] }, { "cell_type": "code", "source": [ "words = []\n", "classes = []\n", "data_x = []\n", "data_y = []\n", "for intent in data[\"intents\"]:\n", " for pattern in intent[\"patterns\"]:\n", " tokens = nltk.word_tokenize(pattern)\n", " words.extend(tokens)\n", " data_x.append(pattern)\n", " data_y.append(intent[\"tag\"])\n", " if intent[\"tag\"] not in classes:\n", " classes.append(intent[\"tag\"])" ], "metadata": { "id": "LzUejWy-kyFG" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "print(words)\n", "print(classes)\n", "print(data_x)\n", "print(data_y)" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "fL1tkVBvm5yL", "outputId": "697a1b39-6a3a-43de-e3aa-54783d4722a8" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "['Hello', 'Hi', 'there', 'Good', 'morning', 'What', \"'s\", 'up', 'What', 'is', 'your', 'job', 'What', 'is', 'your', 'work', 'What', 'is', 'your', 'age', 'How', 'old', 'are', 'you', 'When', 'were', 'you', 'born', 'How', 'are', 'you', 'today', 'How', 'are', 'you', 'I', 'am', 'good', 'too', 'I', 'feel', 'fine', 'Good', '!', 'Fine', 'I', 'am', 'good', 'I', 'am', 'great', 'great', 'I', 'am', 'feeling', 'bad', 'No', 'I', 'am', 'sad', 'No', 'What', 'can', 'you', 'do', 'What', 'can', 'I', 'ask', 'you', 'Can', 'you', 'help', 'me', 'Are', 'you', 'a', 'girl', 'You', 'are', 'a', 'women', 'Are', 'you', 'a', 'men', 'Are', 'you', 'a', 'boy', 'Thank', 'you', 'Thank', 'you', 'very', 'much', 'thanks', 'Goodbye', 'Good', 'afternoon', 'Bye', 'Where', 'do', 'you', 'live', 'What', 'are', 'you', 'doing', 'Can', 'you', 'wait', '2', 'minutes', 'Please', 'wait', 'Wait', '2', 'secs', 'please', 'Are', 'you', 'still', 'there', '?', 'Are', 'you', 'here', '?']\n", "['hello', 'noanswer', 'job', 'age', 'feeling', 'good', 'bad', 'actions', 'women', 'men', 'thanks', 'goodbye', 'city', 'action', 'wait', 'still there']\n", "['Hello', 'Hi there', 'Good morning', \"What's up\", 'What is your job', 'What is your work', 'What is your age', 'How old are you', 'When were you born', 'How are you today', 'How are you', 'I am good too', 'I feel fine', 'Good !', 'Fine', 'I am good', 'I am great', 'great', 'I am feeling bad', 'No I am sad', 'No', 'What can you do', 'What can I ask you', 'Can you help me', 'Are you a girl', 'You are a women', 'Are you a men', 'Are you a boy', 'Thank you', 'Thank you very much', 'thanks', 'Goodbye', 'Good afternoon', 'Bye', 'Where do you live', 'What are you doing', 'Can you wait 2 minutes', 'Please wait', 'Wait 2 secs please', 'Are you still there?', 'Are you here?']\n", "['hello', 'hello', 'hello', 'hello', 'job', 'job', 'age', 'age', 'age', 'feeling', 'feeling', 'good', 'good', 'good', 'good', 'good', 'good', 'good', 'bad', 'bad', 'bad', 'actions', 'actions', 'actions', 'women', 'women', 'men', 'men', 'thanks', 'thanks', 'thanks', 'goodbye', 'goodbye', 'goodbye', 'city', 'action', 'wait', 'wait', 'wait', 'still there', 'still there']\n" ] } ] }, { "cell_type": "code", "source": [ "lemmatizer = WordNetLemmatizer() # szótövesítés\n", "words = [lemmatizer.lemmatize(word.lower()) for word in words if word not in string.punctuation]\n", "words = sorted(set(words))\n", "classes = sorted(set(classes))" ], "metadata": { "id": "Rc_lLoZ5oMOU" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "print(words)\n", "print(classes)" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "sSuoJbHNrLyQ", "outputId": "51b0f10b-2b6a-4170-9a5d-e972c7f67807" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "[\"'s\", '2', 'a', 'afternoon', 'age', 'am', 'are', 'ask', 'bad', 'born', 'boy', 'bye', 'can', 'do', 'doing', 'feel', 'feeling', 'fine', 'girl', 'good', 'goodbye', 'great', 'hello', 'help', 'here', 'hi', 'how', 'i', 'is', 'job', 'live', 'me', 'men', 'minute', 'morning', 'much', 'no', 'old', 'please', 'sad', 'sec', 'still', 'thank', 'thanks', 'there', 'today', 'too', 'up', 'very', 'wait', 'were', 'what', 'when', 'where', 'woman', 'work', 'you', 'your']\n", "['action', 'actions', 'age', 'bad', 'city', 'feeling', 'good', 'goodbye', 'hello', 'job', 'men', 'noanswer', 'still there', 'thanks', 'wait', 'women']\n" ] } ] }, { "cell_type": "code", "source": [ "training = []\n", "out_empty = [0 for i in range(len(classes))]\n", "\n", "for i in range(len(data_x)):\n", " bow = [] # bag of words\n", " text = lemmatizer.lemmatize(data_x[i].lower())\n", " for word in words:\n", " if word in text:\n", " bow.append(1)\n", " else:\n", " bow.append(0)\n", " output_row = list(out_empty)\n", " output_row[classes.index(data_y[i])] = 1\n", " training.append([bow, output_row])\n", "\n", "random.shuffle(training)\n", "training = np.array(training, dtype=object)\n", "train_x = np.array(list(training[:, 0]))\n", "train_y = np.array(list(training[:, 1]))\n", "print(train_x)\n", "print(train_x.shape)" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "Y0ICWXRBrgEL", "outputId": "03d80c22-7af8-4e0f-ce43-699ed0c43ef3" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "[[0 0 1 ... 0 0 0]\n", " [0 0 0 ... 0 0 0]\n", " [0 0 1 ... 0 1 1]\n", " ...\n", " [0 0 1 ... 0 1 0]\n", " [0 0 1 ... 0 0 0]\n", " [0 0 1 ... 0 1 0]]\n", "(41, 58)\n" ] } ] }, { "cell_type": "code", "source": [ "model = Sequential()\n", "model.add(Dense(128, input_shape=(train_x.shape[1],) , activation=\"relu\"))\n", "model.add(Dropout(0.5))\n", "model.add(Dense(64, activation=\"relu\"))\n", "model.add(Dropout(0.5))\n", "model.add(Dense(len(train_y[0]), activation=\"softmax\"))\n", "model.summary()" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 358 }, "collapsed": true, "id": "A1gvMd7yvV1O", "outputId": "5d4e5d22-3eeb-4d8b-dfde-b9cd4240cd6b" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stderr", "text": [ "/usr/local/lib/python3.11/dist-packages/keras/src/layers/core/dense.py:87: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.\n", " super().__init__(activity_regularizer=activity_regularizer, **kwargs)\n" ] }, { "output_type": "display_data", "data": { "text/plain": [ "\u001b[1mModel: \"sequential\"\u001b[0m\n" ], "text/html": [ "
Model: \"sequential\"\n",
              "
\n" ] }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": [ "┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n", "┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\n", "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n", "│ dense (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m7,552\u001b[0m │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ dropout (\u001b[38;5;33mDropout\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ dense_1 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m8,256\u001b[0m │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ dropout_1 (\u001b[38;5;33mDropout\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │\n", "├─────────────────────────────────┼────────────────────────┼───────────────┤\n", "│ dense_2 (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m16\u001b[0m) │ \u001b[38;5;34m1,040\u001b[0m │\n", "└─────────────────────────────────┴────────────────────────┴───────────────┘\n" ], "text/html": [ "
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━┓\n",
              "┃ Layer (type)                     Output Shape                  Param # ┃\n",
              "┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━┩\n",
              "│ dense (Dense)                   │ (None, 128)            │         7,552 │\n",
              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
              "│ dropout (Dropout)               │ (None, 128)            │             0 │\n",
              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
              "│ dense_1 (Dense)                 │ (None, 64)             │         8,256 │\n",
              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
              "│ dropout_1 (Dropout)             │ (None, 64)             │             0 │\n",
              "├─────────────────────────────────┼────────────────────────┼───────────────┤\n",
              "│ dense_2 (Dense)                 │ (None, 16)             │         1,040 │\n",
              "└─────────────────────────────────┴────────────────────────┴───────────────┘\n",
              "
\n" ] }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": [ "\u001b[1m Total params: \u001b[0m\u001b[38;5;34m16,848\u001b[0m (65.81 KB)\n" ], "text/html": [ "
 Total params: 16,848 (65.81 KB)\n",
              "
\n" ] }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": [ "\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m16,848\u001b[0m (65.81 KB)\n" ], "text/html": [ "
 Trainable params: 16,848 (65.81 KB)\n",
              "
\n" ] }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": [ "\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m0\u001b[0m (0.00 B)\n" ], "text/html": [ "
 Non-trainable params: 0 (0.00 B)\n",
              "
\n" ] }, "metadata": {} } ] }, { "cell_type": "code", "source": [ "model.compile(loss=\"categorical_crossentropy\", optimizer=\"adam\", metrics=[\"accuracy\"])\n", "model.fit(train_x, train_y, epochs=200, batch_size=8)" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "collapsed": true, "id": "dCnlvhonxCjT", "outputId": "3039992b-b384-46c4-f96f-b03c21effc36" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Epoch 1/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 13ms/step - accuracy: 0.9013 - loss: 0.4223\n", "Epoch 2/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step - accuracy: 0.8161 - loss: 0.4099\n", "Epoch 3/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step - accuracy: 0.8714 - loss: 0.5151\n", "Epoch 4/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step - accuracy: 0.7759 - loss: 0.5987\n", "Epoch 5/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9639 - loss: 0.3097 \n", "Epoch 6/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9074 - loss: 0.4008 \n", "Epoch 7/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9282 - loss: 0.3338 \n", "Epoch 8/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9208 - loss: 0.3499 \n", "Epoch 9/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9342 - loss: 0.4256 \n", "Epoch 10/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9401 - loss: 0.3033 \n", "Epoch 11/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.7775 - loss: 0.5135 \n", "Epoch 12/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9790 - loss: 0.2590 \n", "Epoch 13/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.8940 - loss: 0.4016 \n", "Epoch 14/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - accuracy: 0.8848 - loss: 0.3445 \n", "Epoch 15/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9895 - loss: 0.2447 \n", "Epoch 16/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9930 - loss: 0.2349 \n", "Epoch 17/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.8698 - loss: 0.4566 \n", "Epoch 18/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9492 - loss: 0.2545 \n", "Epoch 19/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step - accuracy: 0.9492 - loss: 0.2572 \n", "Epoch 20/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9224 - loss: 0.3773 \n", "Epoch 21/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9103 - loss: 0.2816 \n", "Epoch 22/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step - accuracy: 0.9013 - loss: 0.3079 \n", "Epoch 23/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9342 - loss: 0.3012 \n", "Epoch 24/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9631 - loss: 0.2451 \n", "Epoch 25/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9685 - loss: 0.2765 \n", "Epoch 26/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - accuracy: 0.9615 - loss: 0.2600 \n", "Epoch 27/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9297 - loss: 0.2480 \n", "Epoch 28/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9072 - loss: 0.2842 \n", "Epoch 29/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9701 - loss: 0.1948 \n", "Epoch 30/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9175 - loss: 0.3409 \n", "Epoch 31/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.8953 - loss: 0.2918 \n", "Epoch 32/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9033 - loss: 0.3333 \n", "Epoch 33/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - accuracy: 0.9685 - loss: 0.2170 \n", "Epoch 34/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step - accuracy: 0.9701 - loss: 0.2254 \n", "Epoch 35/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9523 - loss: 0.2524 \n", "Epoch 36/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9045 - loss: 0.2883 \n", "Epoch 37/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9492 - loss: 0.2043 \n", "Epoch 38/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9162 - loss: 0.2981 \n", "Epoch 39/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9580 - loss: 0.2533 \n", "Epoch 40/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.8660 - loss: 0.4178 \n", "Epoch 41/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9373 - loss: 0.2581 \n", "Epoch 42/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9631 - loss: 0.1760 \n", "Epoch 43/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9640 - loss: 0.2130 \n", "Epoch 44/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9596 - loss: 0.2476 \n", "Epoch 45/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9373 - loss: 0.2417 \n", "Epoch 46/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9685 - loss: 0.1881 \n", "Epoch 47/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9790 - loss: 0.1160 \n", "Epoch 48/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9417 - loss: 0.2561 \n", "Epoch 49/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9701 - loss: 0.1849 \n", "Epoch 50/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - accuracy: 0.9850 - loss: 0.1423 \n", "Epoch 51/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9313 - loss: 0.1501 \n", "Epoch 52/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9446 - loss: 0.2218 \n", "Epoch 53/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9312 - loss: 0.2492 \n", "Epoch 54/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9243 - loss: 0.2779 \n", "Epoch 55/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9895 - loss: 0.1437 \n", "Epoch 56/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9895 - loss: 0.2171 \n", "Epoch 57/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9850 - loss: 0.1210 \n", "Epoch 58/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9087 - loss: 0.2534 \n", "Epoch 59/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 1.0000 - loss: 0.1798 \n", "Epoch 60/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step - accuracy: 0.9596 - loss: 0.1523\n", "Epoch 61/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9639 - loss: 0.2272 \n", "Epoch 62/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9446 - loss: 0.1766 \n", "Epoch 63/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step - accuracy: 0.9074 - loss: 0.2203 \n", "Epoch 64/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - accuracy: 0.9297 - loss: 0.2744 \n", "Epoch 65/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.8746 - loss: 0.2632 \n", "Epoch 66/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - accuracy: 0.9417 - loss: 0.2531 \n", "Epoch 67/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9386 - loss: 0.1950 \n", "Epoch 68/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 1.0000 - loss: 0.1555 \n", "Epoch 69/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9373 - loss: 0.2658 \n", "Epoch 70/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9895 - loss: 0.1057 \n", "Epoch 71/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9596 - loss: 0.2432 \n", "Epoch 72/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step - accuracy: 0.9492 - loss: 0.1991 \n", "Epoch 73/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9701 - loss: 0.1648 \n", "Epoch 74/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9431 - loss: 0.1931 \n", "Epoch 75/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 1.0000 - loss: 0.1094 \n", "Epoch 76/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9535 - loss: 0.1275 \n", "Epoch 77/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - accuracy: 0.9850 - loss: 0.1526 \n", "Epoch 78/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9074 - loss: 0.2633 \n", "Epoch 79/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.8925 - loss: 0.1819 \n", "Epoch 80/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9895 - loss: 0.1493 \n", "Epoch 81/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step - accuracy: 0.9103 - loss: 0.1915\n", "Epoch 82/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9551 - loss: 0.1727 \n", "Epoch 83/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9523 - loss: 0.1556 \n", "Epoch 84/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9224 - loss: 0.1504 \n", "Epoch 85/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9523 - loss: 0.1148 \n", "Epoch 86/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9700 - loss: 0.1400 \n", "Epoch 87/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9789 - loss: 0.1155 \n", "Epoch 88/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - accuracy: 0.9535 - loss: 0.1198 \n", "Epoch 89/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - accuracy: 0.9417 - loss: 0.2047 \n", "Epoch 90/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - accuracy: 1.0000 - loss: 0.2030 \n", "Epoch 91/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - accuracy: 0.9282 - loss: 0.2489 \n", "Epoch 92/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9401 - loss: 0.1646 \n", "Epoch 93/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9193 - loss: 0.1815 \n", "Epoch 94/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - accuracy: 0.9745 - loss: 0.1877 \n", "Epoch 95/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - accuracy: 0.9850 - loss: 0.1302 \n", "Epoch 96/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9523 - loss: 0.1590 \n", "Epoch 97/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9523 - loss: 0.1287 \n", "Epoch 98/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9790 - loss: 0.1094 \n", "Epoch 99/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9224 - loss: 0.2367 \n", "Epoch 100/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9701 - loss: 0.1228 \n", "Epoch 101/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.8895 - loss: 0.2684 \n", "Epoch 102/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9701 - loss: 0.1204 \n", "Epoch 103/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9072 - loss: 0.1525 \n", "Epoch 104/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9224 - loss: 0.2232 \n", "Epoch 105/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9373 - loss: 0.2256 \n", "Epoch 106/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9745 - loss: 0.1671 \n", "Epoch 107/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - accuracy: 0.9208 - loss: 0.2582 \n", "Epoch 108/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step - accuracy: 0.9895 - loss: 0.0647\n", "Epoch 109/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.8940 - loss: 0.1454 \n", "Epoch 110/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9313 - loss: 0.2220 \n", "Epoch 111/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9745 - loss: 0.1289 \n", "Epoch 112/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9745 - loss: 0.1201 \n", "Epoch 113/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9685 - loss: 0.1030 \n", "Epoch 114/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - accuracy: 0.9640 - loss: 0.1457 \n", "Epoch 115/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9313 - loss: 0.1231 \n", "Epoch 116/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9685 - loss: 0.1676 \n", "Epoch 117/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - accuracy: 0.9523 - loss: 0.1195 \n", "Epoch 118/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9895 - loss: 0.1199 \n", "Epoch 119/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9014 - loss: 0.2301 \n", "Epoch 120/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9745 - loss: 0.0670 \n", "Epoch 121/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step - accuracy: 0.9481 - loss: 0.2368\n", "Epoch 122/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 13ms/step - accuracy: 1.0000 - loss: 0.0898\n", "Epoch 123/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step - accuracy: 0.9224 - loss: 0.1486\n", "Epoch 124/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step - accuracy: 0.9640 - loss: 0.1131\n", "Epoch 125/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step - accuracy: 0.9701 - loss: 0.0941 \n", "Epoch 126/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step - accuracy: 0.9640 - loss: 0.1493\n", "Epoch 127/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step - accuracy: 0.9701 - loss: 0.0978\n", "Epoch 128/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step - accuracy: 0.9850 - loss: 0.1015\n", "Epoch 129/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 13ms/step - accuracy: 0.9701 - loss: 0.1244\n", "Epoch 130/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step - accuracy: 0.9523 - loss: 0.1167\n", "Epoch 131/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step - accuracy: 0.9163 - loss: 0.1924\n", "Epoch 132/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step - accuracy: 0.9745 - loss: 0.1403\n", "Epoch 133/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 14ms/step - accuracy: 0.9790 - loss: 0.2090\n", "Epoch 134/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step - accuracy: 0.9551 - loss: 0.1243\n", "Epoch 135/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step - accuracy: 0.9790 - loss: 0.1692\n", "Epoch 136/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step - accuracy: 0.9523 - loss: 0.0777\n", "Epoch 137/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step - accuracy: 0.9535 - loss: 0.1032\n", "Epoch 138/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 13ms/step - accuracy: 0.9208 - loss: 0.1792\n", "Epoch 139/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step - accuracy: 0.9282 - loss: 0.1370\n", "Epoch 140/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 12ms/step - accuracy: 0.9386 - loss: 0.2386\n", "Epoch 141/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9251 - loss: 0.1644 \n", "Epoch 142/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9850 - loss: 0.0597 \n", "Epoch 143/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9789 - loss: 0.0765 \n", "Epoch 144/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9402 - loss: 0.1142 \n", "Epoch 145/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9222 - loss: 0.1510 \n", "Epoch 146/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - accuracy: 0.9453 - loss: 0.1391 \n", "Epoch 147/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9342 - loss: 0.1510 \n", "Epoch 148/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9551 - loss: 0.0926 \n", "Epoch 149/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step - accuracy: 0.9790 - loss: 0.1400\n", "Epoch 150/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9701 - loss: 0.1039 \n", "Epoch 151/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9492 - loss: 0.1314 \n", "Epoch 152/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 1.0000 - loss: 0.0626 \n", "Epoch 153/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9640 - loss: 0.0998 \n", "Epoch 154/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9639 - loss: 0.0837 \n", "Epoch 155/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9895 - loss: 0.1271 \n", "Epoch 156/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9790 - loss: 0.0614 \n", "Epoch 157/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9850 - loss: 0.1278 \n", "Epoch 158/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9523 - loss: 0.1224 \n", "Epoch 159/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9313 - loss: 0.1453 \n", "Epoch 160/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9790 - loss: 0.1094 \n", "Epoch 161/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9790 - loss: 0.1189 \n", "Epoch 162/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 11ms/step - accuracy: 0.9701 - loss: 0.1343\n", "Epoch 163/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9825 - loss: 0.0505 \n", "Epoch 164/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9523 - loss: 0.1277 \n", "Epoch 165/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - accuracy: 1.0000 - loss: 0.0546 \n", "Epoch 166/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9045 - loss: 0.1184 \n", "Epoch 167/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9313 - loss: 0.1264 \n", "Epoch 168/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9402 - loss: 0.1445 \n", "Epoch 169/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9417 - loss: 0.1636 \n", "Epoch 170/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9850 - loss: 0.0549 \n", "Epoch 171/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - accuracy: 0.8836 - loss: 0.1352 \n", "Epoch 172/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9631 - loss: 0.0924 \n", "Epoch 173/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - accuracy: 0.9701 - loss: 0.0775 \n", "Epoch 174/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - accuracy: 0.9701 - loss: 0.1038 \n", "Epoch 175/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9596 - loss: 0.1202 \n", "Epoch 176/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - accuracy: 0.9312 - loss: 0.1461 \n", "Epoch 177/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9373 - loss: 0.1289 \n", "Epoch 178/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - accuracy: 0.9701 - loss: 0.1199 \n", "Epoch 179/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9745 - loss: 0.0810 \n", "Epoch 180/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - accuracy: 0.9895 - loss: 0.0964 \n", "Epoch 181/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - accuracy: 0.9721 - loss: 0.0676 \n", "Epoch 182/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9685 - loss: 0.1341 \n", "Epoch 183/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - accuracy: 0.9417 - loss: 0.0891 \n", "Epoch 184/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step - accuracy: 0.9523 - loss: 0.0683\n", "Epoch 185/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9118 - loss: 0.1749 \n", "Epoch 186/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9701 - loss: 0.1020 \n", "Epoch 187/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9224 - loss: 0.1953 \n", "Epoch 188/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step - accuracy: 0.9850 - loss: 0.0927\n", "Epoch 189/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - accuracy: 0.9895 - loss: 0.0880 \n", "Epoch 190/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9895 - loss: 0.0503 \n", "Epoch 191/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - accuracy: 0.9895 - loss: 0.0538 \n", "Epoch 192/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9596 - loss: 0.1371 \n", "Epoch 193/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9523 - loss: 0.0898 \n", "Epoch 194/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9850 - loss: 0.1354 \n", "Epoch 195/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 10ms/step - accuracy: 0.9790 - loss: 0.0632\n", "Epoch 196/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step - accuracy: 0.9850 - loss: 0.0994 \n", "Epoch 197/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9385 - loss: 0.1100 \n", "Epoch 198/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9402 - loss: 0.1098 \n", "Epoch 199/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 7ms/step - accuracy: 0.9340 - loss: 0.1569 \n", "Epoch 200/200\n", "\u001b[1m6/6\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 8ms/step - accuracy: 0.9535 - loss: 0.1525 \n" ] }, { "output_type": "execute_result", "data": { "text/plain": [ "" ] }, "metadata": {}, "execution_count": 15 } ] } ] }